Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.327
Filtrar
1.
Immun Inflamm Dis ; 12(3): e1227, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38533915

RESUMO

BACKGROUND: End-stage renal disease (ESRD) is the final stage of chronic kidney disease (CKD). AIMS: We aimed to analyze the expression differences of serum thrombomodulin (TM), platelet-activating factor (PAF), and P-selectin (CD62P) in patients with autologous arteriovenous fistula (AVF) and the correlation with vascular access function. METHODS: The case data were retrospectively analyzed. Moreover, 160 patients with AVF maintenance hemodialysis were selected as the AVF group, and 150 healthy participants were selected as the healthy control group. According to the function of vascular access, patients in the AVF group were divided into Group A (n = 50, after the first establishment of AVF), Group B (n = 64, normal vascular access function after hemodialysis treatment), and Group C (n = 46, vascular access failure). Pearson analysis was conducted to explore the correlation between serum TM, PAF, CD62P content, and vascular pathological examination indicators, to evaluate the value of TM, PAF, and CD62P levels in predicting vascular access failure in patients with AVF. RESULTS AND DISCUSSION: The serum levels of TM, PAF, and CD62P were positively correlated with the expressions of CD68 and MCP-1, respectively (p < .001). Serum TM was positively correlated with the levels of PAF and CD62P (p < .001), and PAF was positively correlated with the levels of CD62P (p < .001), respectively. Serum levels of TM, PAF and CD62P were risk factors for vascular access failure in AVF patients (p < .05). The area under the curve of serum TM, PAF and CD62P levels in predicting vascular access failure in AVF patients was 0.879. CONCLUSION: The serum levels of TM, PAF, and CD62P in AVF patients were correlated with the vascular access function of AVF patients, which was very important for maintaining the stability of vascular access function, and had certain value in predicting vascular access failure/disorder in AVF patients, and could be popularized and applied.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Humanos , Estudos Retrospectivos , Selectina-P , Fator de Ativação de Plaquetas , Trombomodulina , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Derivação Arteriovenosa Cirúrgica/métodos , Diálise Renal/efeitos adversos , Diálise Renal/métodos , Fístula Arteriovenosa/etiologia
2.
J Pharmacol Sci ; 154(4): 256-263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485343

RESUMO

Platelet-activating factor (PAF) is expected to increase esophageal motility. However, to the best of our knowledge, this has not been examined. Thus, we investigated the contractile effects of PAF on guinea pig (GP) esophageal muscularis mucosae (EMM) and the extracellular Ca2+ influx pathways responsible. PAF (10-9-10-6 M) contracted EMM in a concentration-dependent manner. PAF (10-6 M)-induced contractions were almost completely suppressed by apafant (a PAF receptor antagonist, 3 × 10-5 M). In EMM strips, PAF receptor and PAF-synthesizing/degrading enzyme mRNAs were detected. PAF (10-6 M)-induced contractions were abolished by extracellular Ca2+ removal but were not affected by diltiazem [a voltage-dependent Ca2+ channel (VDCC) inhibitor, 10-5 M]. PAF (10-6 M)-induced contractions in the presence of diltiazem were significantly suppressed by LOE-908 [a receptor-operated Ca2+ channel (ROCC) inhibitor, 3 × 10-5 M], SKF-96365 [an ROCC and store-operated Ca2+ channel (SOCC) inhibitor, 3 × 10-5 M], and LOE-908 plus SKF-96365. Among the tested ROCC/SOCC-related mRNAs, Trpc3, Trpc6, and Trpv4/Orai1, Orai3, and Stim2 were abundantly expressed in EMM strips. These results indicate that PAF potently induces GP EMM contractions that are dependent on extracellular Ca2+ influx through ROCCs/SOCCs, and VDCCs are unlikely to be involved.


Assuntos
Diltiazem , Isoquinolinas , Fator de Ativação de Plaquetas , Cobaias , Animais , Diltiazem/farmacologia , Fator de Ativação de Plaquetas/farmacologia , Acetamidas , Canais de Cálcio/metabolismo , Mucosa/metabolismo , Cálcio/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396790

RESUMO

Platelet-activating factor (PAF) is a phospholipid-derived inflammatory mediator that triggers various inflammatory conditions, including eosinophil activation and recruitment. This study aimed to evaluate the expressions of PAF-metabolism-associated genes, namely genes coding the enzymes involved in PAF synthesis (LPCAT1, LPCAT2, LPCAT3, and LPCAT4), PAF degradation (PAFAH1B2, PAFAH1B3, and PAFAH2), and the gene for the PAF receptor (PTAFR) in subtypes of CRSwNP classified by clinical- or hierarchal-analysis-based classifications. Transcriptomic analysis using bulk RNA barcoding and sequencing (BRB-seq) was performed with CRSwNP, including eosinophilic CRS (ECRS) (n = 9), nonECRS (n = 8), ECRS with aspirin-exacerbated respiratory disease (Asp) (n = 3), and controls with a normal uncinate process mucosa (n = 6). PTAFR was only upregulated in ECRS and nonECRS. In the hierarchical cluster analysis with clusters 1 and 2 reflecting patients with low-to-moderate and high levels of type 2 inflammation, respectively, cluster 1 exhibited a significant downregulation of LPCAT2 and an upregulation of PTAFR expression, while cluster 2 showed an upregulation of LPCAT1, PAFAH1B2, and PTAFR and downregulation of PAFAH2 expression. Understanding this strong PAF-associated pathophysiology in the severe type 2 inflammation group could provide valuable insights into the treatment and management of CRSwNP.


Assuntos
Pólipos Nasais , Rinite , 60523 , Sinusite , Humanos , Rinite/patologia , Fator de Ativação de Plaquetas/genética , Fator de Ativação de Plaquetas/metabolismo , Mucosa Nasal/metabolismo , RNA/metabolismo , Pólipos Nasais/patologia , Sinusite/metabolismo , Inflamação/metabolismo , Doença Crônica , Análise por Conglomerados , Eosinófilos/metabolismo
4.
Toxicon ; 240: 107640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325757

RESUMO

The effects of dietary supplementation with Capsicum annuum fruit pericarp powder (CPP) and Capsicum annuum fruit seed powder (CSP) on the health and performance of broiler chickens exposed to aflatoxin B1 (AFB1) was investigated. Four dietary groups were established: CON (control), AFT (0.5 mg/kg AFB1), CPAF (0.5 g/kg CPP and 0.5 mg/kg AFB1), and CSAF (0.5 g/kg CSP and 0.5 mg/kg AFB1). The AFT group shows a significant (P < 0.05) reduction in the relative growth rate compared to CON, CPAF, and CSAF. In contrast, the latter two groups exhibit growth rates similar (P > 0.05) to CON. Additionally, immunoglobulin levels (IgG, IgM, and IgA) in the AFT group are significantly (P < 0.05) lower compared to the other treatment groups. Serum interleukin-6 levels in the CPAF and CSAF groups were similar (P > 0.05) to CON but higher (P < 0.05) than in AFT. Tumor necrosis factor-alpha levels were elevated (P < 0.05) in AFT compared to the other treatment groups. Interferon-gamma concentrations in AFT were significantly (P < 0.05) lower than in the other treatment groups. The liver histology reveals that the AFT treatment group has periportal hepatic inflammation. In contrast, the CPAF and CSAF treatment groups exhibit normal hepatic microanatomy. In conclusion, 0.5 g/kg CPAF dietary supplementation may help to ameliorate the adverse effects of AFB1 exposure on broiler chicken health, specifically the growth, immune parameters and liver histology.


Assuntos
Capsicum , Fator de Ativação de Plaquetas/análogos & derivados , Animais , Galinhas , Aflatoxina B1/toxicidade , Aflatoxina B1/análise , Pós/farmacologia , Citocinas , Adipocinas/farmacologia , Fígado , Suplementos Nutricionais , Imunoglobulinas , Carne , Ração Animal/análise
5.
Eur J Nutr ; 63(2): 445-460, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38063929

RESUMO

PURPOSE: To investigate the association between pro-inflammatory markers platelet-activating factor (PAF), lipoprotein-associated phospholipase A2 (Lp-PLA2), hsCRP, and intake of core food groups including fruit, cruciferous and other vegetables, grains, meat and poultry, fish and seafood, nuts and legumes, and dairy. METHODS: A cross-sectional study was conducted. 100 adults (49 ± 13 years, 31% male) with variable cardiovascular disease risk were recruited. Data were collected in 2021 and 2022. Fasting PAF, Lp-PLA2 activity, hsCRP and usual dietary intake (via a validated food frequency questionnaire) were measured. Intake of foods were converted into serves and classified into food groups. Correlations and multiple regressions were performed with adjustment for confounders. RESULTS: A one-serve increase in cruciferous vegetables per day was associated with 20-24% lower PAF levels. An increase of one serve per day of nuts and legumes was associated with 40% lower hsCRP levels. There were small correlations with PAF and Lp-PLA2 and cheese, however, these were not significant at the Bonferroni-adjusted P < 0.005 level. CONCLUSION: The lack of associations between PAF and Lp-PLA2 and other healthy foods may be due to confounding by COVID-19 infection and vaccination programs which prevents any firm conclusion on the relationship between PAF, Lp-PLA2 and food groups. Future research should aim to examine the relationship with these novel markers and healthy food groups in a non-pandemic setting.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Proteína C-Reativa , Masculino , Animais , Feminino , Proteína C-Reativa/análise , Estudos Transversais , Fator de Ativação de Plaquetas , Verduras
6.
Int Immunopharmacol ; 126: 111254, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995571

RESUMO

Toxoplasma gondii (T. gondii)-derived heat shock protein 70 (T.g.HSP70) is a toxic protein that downregulates host defense responses against T. gondii infection. T.g.HSP70 was proven to induce fatal anaphylaxis in T. gondii infected mice through cytosolic phospholipase A2 (cPLA2) activated-platelet-activating factor (PAF) production via Toll-like receptor 4 (TLR4)-mediated signaling. In this study, we investigated the effect of arctiin (ARC; a major lignan compound of Fructus arctii) on allergic liver injury using T.g.HSP70-stimulated murine liver cell line (NCTC 1469) and a mouse model of T. gondii infection. Localized surface plasmon resonance, ELISA, western blotting, co-immunoprecipitation, and immunofluorescence were used to investigate the underlying mechanisms of action of ARC on T. gondii-induced allergic acute liver injury. The results showed that ARC suppressed the T.g.HSP70-induced allergic liver injury in a dose-dependent manner. ARC could directly bind to T.g.HSP70 or TLR4, interfering with the interaction between these two factors, and inhibiting activation of the TLR4/mitogen-activated protein kinase/nuclear factor-kappa B signaling, thereby inhibiting the overproduction of cPLA2, PAF, and interferon-γ. This result suggested that ARC ameliorates T.g.HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of inflammatory mediators, providing a theoretical basis for ARC therapy to improve T.g.HSP70-induced allergic liver injury.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Camundongos , Toxoplasma/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Ativação de Plaquetas , Toxoplasmose/tratamento farmacológico , Proteínas de Choque Térmico HSP70/metabolismo , Fígado/metabolismo , Fosfolipases/metabolismo
7.
Sci Rep ; 13(1): 21637, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062077

RESUMO

Although it is well established that platelet-activated receptor (PAF) and protease-activated receptor 2 (PAR2) play a pivotal role in the pathophysiology of lung and airway inflammatory diseases, a role for a PAR2-PAFR cooperation in lung inflammation has not been investigated. Here, we investigated the role of PAR2 in PAF-induced lung inflammation and neutrophil recruitment in lungs of BALB/c mice. Mice were pretreated with the PAR2 antagonist ENMD1068, PAF receptor (PAFR) antagonist WEB2086, or aprotinin prior to intranasal instillation of carbamyl-PAF (C-PAF) or the PAR2 agonist peptide SLIGRL-NH2 (PAR2-AP). Leukocyte infiltration in bronchoalveolar lavage fluid (BALF), C-X-C motif ligand 1 (CXCL)1 and CXCL2 chemokines, myeloperoxidase (MPO), and N-acetyl-glycosaminidase (NAG) levels in BALF, or lung inflammation were evaluated. Intracellular calcium signaling, PAFR/PAR2 physical interaction, and the expression of PAR2 and nuclear factor-kappa B (NF-КB, p65) transcription factor were investigated in RAW 264.7 cells stimulated with C-PAF in the presence or absence of ENMD1068. C-PAF- or PAR2-AP-induced neutrophil recruitment into lungs was inhibited in mice pretreated with ENMD1068 and aprotinin or WEB2086, respectively. PAR2 blockade impaired C-PAF-induced neutrophil rolling and adhesion, lung inflammation, and production of MPO, NAG, CXCL1, and CXCL2 production in lungs of mice. PAFR activation reduced PAR2 expression and physical interaction of PAR2 and PAFR; co-activation is required for PAFR/PAR2 physical interaction. PAR2 blockade impaired C-PAF-induced calcium signal and NF-κB p65 translocation in RAW 264.7 murine macrophages. This study provides the first evidence for a cooperation between PAFR and PAR2 mediating neutrophil recruitment, lung inflammation, and macrophage activation.


Assuntos
NF-kappa B , Pneumonia , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Aprotinina/metabolismo , Infiltração de Neutrófilos , Ativação Transcricional , Pneumonia/induzido quimicamente
8.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003333

RESUMO

Omega-3 polyunsaturated fatty acids (PUFAs) play a vital role in human health, well-being, and the management of inflammatory diseases. Insufficient intake of omega-3 is linked to disease development. Specialized pro-resolving mediators (SPMs) are derived from omega-3 PUFAs and expedite the resolution of inflammation. They fall into categories known as resolvins, maresins, protectins, and lipoxins. The actions of SPMs in the resolution of inflammation involve restricting neutrophil infiltration, facilitating the removal of apoptotic cells and cellular debris, promoting efferocytosis and phagocytosis, counteracting the production of pro-inflammatory molecules like chemokines and cytokines, and encouraging a pro-resolving macrophage phenotype. This is an experimental pilot study in which ten healthy subjects were enrolled and received a single dose of 6 g of an oral SPM-enriched marine oil emulsion. Peripheral blood was collected at baseline, 3, 6, 9, 12, and 24 h post-administration. Temporal increases in plasma and serum SPM levels were found by using LC-MS/MS lipid profiling. Additionally, we characterized the temporal increases in omega-3 levels and established fundamental pharmacokinetics in both aforementioned matrices. These findings provide substantial evidence of the time-dependent elevation of SPMs, reinforcing the notion that oral supplementation with SPM-enriched products represents a valuable source of essential bioactive SPMs.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Humanos , Voluntários Saudáveis , Cromatografia Líquida , Projetos Piloto , Espectrometria de Massas em Tandem , Inflamação , Fator de Ativação de Plaquetas , Mediadores da Inflamação
9.
J Matern Fetal Neonatal Med ; 36(2): 2272010, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872771

RESUMO

OBJECTIVE: In pregnancies complicated by maternal obesity and diabetes, a disruption in inflammatory mediators occurs, resulting in endothelial microvascular dysfunction, oxidative stress, tissue damage, and maternal and feto-neonatal complications. To outline this proinflammatory status, an innovative approach is represented by the measurement of proinflammatory cytokines. Among these biomarkers, B-cell-activating factor (BAFF) and platelet-activating factor (PAF) play a key role in metabolic regulation, immune response to infections, tissue homeostasis, and "food-related inflammation." The aim of the present study is to investigate the blood expression of BAFF and PAF in a cohort of pregnant women affected by obesity and diabetes compared with a control group of healthy pregnant women. METHODS: A prospective longitudinal cohort study has been conducted on pregnant women referred to Fondazione Policlinico Universitario Gemelli IRCCS in Rome. For each pregnant woman, a capillary sample was collected with a swab in three different consecutive evaluations carried out in the three trimesters of pregnancy. RESULTS: A total of 77 pregnant women have been enrolled. No significant differences in BAFF and PAF levels were longitudinally observed between groups. Focusing on the exposed group, in the third trimester of pregnancy, both PAF and BAFF levels were lower than the basal time. Among the selected group of patients who developed Gestational Diabetes, only PAF values were longitudinally lower when compared to other groups. The multivariate analysis showed that BAFF levels were positively correlated with thyroid-stimulating hormone levels. No macrosomia, no shoulder dystocia, no major perineal lacerations at birth, and no intrauterine growth restriction were observed in the whole population. CONCLUSIONS: This study supports the involvement of metabolic and proinflammatory biomarkers in the mechanisms related to pregnancy complications. Improving a good metabolic environment for obese and diabetic pregnant women could break the vicious cycle connecting inflammation, oxidative stress, and metabolic disorders.


Assuntos
Diabetes Gestacional , Obesidade Materna , Feminino , Humanos , Gravidez , Biomarcadores , Inflamação , Estudos Longitudinais , Obesidade/complicações , Fator de Ativação de Plaquetas , Estudos Prospectivos
10.
Angew Chem Int Ed Engl ; 62(47): e202312996, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37804495

RESUMO

Phomactin diterpenoids possess a unique bicyclo[9.3.1]pentadecane skeleton with multiple oxidative modifications, and are good platelet-activating factor (PAF) antagonists that can inhibit PAF-induced platelet aggregation. In this study, we identified the gene cluster (phm) responsible for the biosynthesis of phomactins from a marine fungus, Phoma sp. ATCC 74077. Despite the complexity of their structures, phomactin biosynthesis only requires two enzymes: a type I diterpene cyclase PhmA and a P450 monooxygenase PhmC. PhmA was found to catalyze the formation of the phomactatriene, while PhmC sequentially catalyzes the oxidation of multiple sites, leading to the generation of structurally diverse phomactins. The rearrangement mechanism of the diterpene scaffold was investigated through isotope labeling experiments. Additionally, we obtained the crystal complex of PhmA with its substrate analogue FGGPP and elucidated the novel metal-ion-binding mode and enzymatic mechanism of PhmA through site-directed mutagenesis. This study provides the first insight into the biosynthesis of phomactins, laying the foundation for the efficient production of phomactin natural products using synthetic biology approaches.


Assuntos
Diterpenos , Fator de Ativação de Plaquetas , Fungos
11.
Molecules ; 28(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836742

RESUMO

Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N'-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2'-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 µM and 0.46 µM, respectively. Within the series, complex (5) was less effective (IC50 = 39 µM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF's basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series.


Assuntos
Antineoplásicos , Complexos de Coordenação , Elementos de Transição , Animais , Humanos , Coelhos , Agregação Plaquetária , Fator de Ativação de Plaquetas/farmacologia , Fator de Ativação de Plaquetas/metabolismo , Plaquetas/metabolismo , Trombina/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Ligantes , Mediadores da Inflamação/metabolismo , Dimetil Sulfóxido/farmacologia , Quinoxalinas/farmacologia , Células HEK293 , Células HeLa , Antineoplásicos/farmacologia , Elementos de Transição/metabolismo
12.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570665

RESUMO

Lidocaine, a local anesthetic, is known to possess anti-inflammatory properties. However, its clinical use is limited by inconveniences, such as its local synesthetic effects. This study evaluated lidocaine analogs designed and synthesized to overcome the disadvantages of lidocaine, having anti-inflammatory properties. Interleukin 5 (IL-5)-induced eosinophil activation and survival were evaluated using 36 lidocaine analogs with modified lidocaine structure on the aromatic or the acyl moiety or both. Eosinophil survival was evaluated using a CellTiter 96® aqueous cell proliferation assay kit. Superoxide production was determined using the superoxide dismutase-inhibitable reduction of cytochrome C method. Eosinophil cationic protein (ECP), IL-8, and transcription factor expression were determined using enzyme-linked immunosorbent assay. The platelet-activating factor (PAF)-induced migration assay was performed using a Transwell insert system. Compounds EI137 and EI341 inhibited IL-5-induced eosinophil survival and superoxide and ECP production in a concentration-dependent manner. These compounds also significantly reduced IL-8 production. Although compounds EI137 and EI341 significantly reduced phosphorylated ERK 1/2 expression, they did not influence other total and phosphorylated transcription factors. Moreover, 1000 µM of compound EI341 only inhibited PAF-induced migration of eosinophils. Lidocaine analogs EI137 and EI341 inhibited IL-5-mediated activation and survival of eosinophils. These compounds could be new therapeutic agents to treat eosinophilic inflammatory diseases.


Assuntos
Eosinófilos , Superóxidos , Superóxidos/metabolismo , Lidocaína/farmacologia , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Interleucina-8/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
13.
J Biomed Sci ; 30(1): 62, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533081

RESUMO

BACKGROUND: Excess polymorphonuclear neutrophil (PMN) recruitment or excessive neutrophil extracellular trap (NET) formation can lead to the development of multiple organ dysfunction during sepsis. M2 macrophage-derived exosomes (M2-Exos) have exhibited anti-inflammatory activities in some inflammatory diseases to mediate organ functional protection, but their role in treating sepsis-related acute lung injury (ALI) remains unclear. In this study, we sought to investigate whether M2-Exos could prevent potentially deleterious inflammatory effects during sepsis-related ALI by modulating abnormal PMN behaviours. METHODS: C57BL/6 wild-type mice were subjected to a caecal ligation and puncture (CLP) mouse model to mimic sepsis in vivo, and M2-Exos were administered intraperitoneally 1 h after CLP. H&E staining, immunofluorescence and immunohistochemistry were conducted to investigate lung tissue injury, PMN infiltration and NET formation in the lung. We further demonstrated the role of M2-Exos on PMN function and explored the potential mechanisms through an in vitro coculture experiment using PMNs isolated from both healthy volunteers and septic patients. RESULTS: Here, we report that M2-Exos inhibited PMN migration and NET formation, alleviated lung injury and reduced mortality in a sepsis mouse model. In vitro, M2-Exos significantly decreased PMN migration and NET formation capacity, leading to lipid mediator class switching from proinflammatory leukotriene B4 (LTB4) to anti-inflammatory lipoxin A4 (LXA4) by upregulating 15-lipoxygenase (15-LO) expression in PMNs. Treatment with LXA4 receptor antagonist attenuated the effect of M2-Exos on PMNs and lung injury. Mechanistically, prostaglandin E2 (PGE2) enriched in M2-Exos was necessary to increase 15-LO expression in PMNs by functioning on the EP4 receptor, upregulate LXA4 production to downregulate chemokine (C-X-C motif) receptor 2 (CXCR2) and reactive oxygen species (ROS) expressions, and finally inhibit PMN function. CONCLUSIONS: Our findings reveal a previously unknown role of M2-Exos in regulating PMN migration and NET formation through lipid mediator class switching, thus highlighting the potential application of M2-Exos in controlling PMN-mediated tissue injury in patients with sepsis.


Assuntos
Armadilhas Extracelulares , Lesão Pulmonar , Sepse , Camundongos , Animais , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Neutrófilos/metabolismo , Infiltração de Neutrófilos , Lesão Pulmonar/metabolismo , Switching de Imunoglobulina , Camundongos Endogâmicos C57BL , Macrófagos , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia
14.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R446-R455, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602385

RESUMO

Hypothermia develops during systemic anaphylaxis in rodents. The aim of this study was to elucidate the mechanism for the hypothermia by assessing the roles of locomotor activity, tail heat dissipation, heat production in the brown adipose tissue (BAT) activity, and chemical mediators during ovalbumin-induced anaphylactic hypotension in awake rats. We measured the core body temperature (Tcore) and mean blood pressure (MBP), along with the surface temperature of the interscapular region (TiScap), an indirect measure of BAT activity, and the tail (Ttail). During anaphylaxis, MBP decreased to the nadir of 53 ± 2 mmHg at 8 min with recovery toward baseline. Tcore began to decrease at 7.5 min with the nadir of 36.1 ± 0.2°C at 30 min from the baseline of 38.0 ± 0.1°C. TiScap also significantly decreased, but its onset was preceded by that of Tcore. Ttail decreased after antigen, suggesting the absence of increased heat dissipation from the tail. The physical activity, as evaluated by moved distances, did not decrease until 20 min after antigen, followed by a progressive decrease. Reduced movement using a restraint maneuver not only reduced Tcore in nonsensitized rats but also augmented the anaphylactic hypothermia in the early phase (1.5-18 min) in sensitized rats. Combined antagonism against platelet-activating factor (PAF) and histamine H1 receptors abolished antigen-induced hypotension but only attenuated hypothermia. In conclusion, decreased locomotor activity, but not tail heat dissipation or decreased BAT activity, may at least in part contribute to this hypothermia. PAF and histamine are involved mainly in hypotension but only partly in hypothermia during rat anaphylaxis.NEW & NOTEWORTHY Anaphylactic shock is a life-threatening systemic hypotension. Hypothermia is observed during systemic anaphylaxis of rats. We determined the mechanism as follows: decreased locomotor activity, but not tail heat dissipation or decreased BAT activity, may at least in part contribute to this hypothermia. PAF and histamine are involved mainly in hypotension, but only partly in hypothermia during rat anaphylaxis.


Assuntos
Anafilaxia , Hipotensão , Hipotermia , Ratos , Animais , Anafilaxia/induzido quimicamente , Histamina , Hipotermia/complicações , Vigília , Hipotensão/etiologia , Fator de Ativação de Plaquetas/efeitos adversos
15.
Biol Pharm Bull ; 46(7): 997-1003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394649

RESUMO

Platelet-activating factor (PAF) not only acts as a mediator of platelet aggregation, inflammation, and allergy responses but also as a constrictor of various smooth muscle (SM) tissues, including gastrointestinal, tracheal/bronchial, and pregnancy uterine SMs. Previously, we reported that PAF induces basal tension increase (BTI) and oscillatory contraction (OC) in mouse urinary bladder SM (UBSM). In this study, we examined the Ca2+ influx pathways involved in PAF-induced BTI and OC in the mouse UBSM. PAF (10-6 M) induced BTI and OC in mouse UBSM. However, the PAF-induced BTI and OC were completely suppressed by extracellular Ca2+ removal. PAF-induced BTI and OC frequencies were markedly suppressed by voltage-dependent Ca2+ channel (VDCC) inhibitors (verapamil (10-5 M), diltiazem (10-5 M), and nifedipine (10-7 M)). However, these VDCC inhibitors had a minor effect on the PAF-induced OC amplitude. The PAF-induced OC amplitude in the presence of verapamil (10-5 M) was strongly suppressed by SKF-96365 (3 × 10-5 M), an inhibitor of receptor-operated Ca2+ channel (ROCC) and store-operated Ca2+ channel (SOCC), but not by LOE-908 (3 × 10-5 M) (an inhibitor of ROCC). Overall, PAF-induced BTI and OC in mouse UBSM depend on Ca2+ influx and the main Ca2+ influx pathways in PAF-induced BTI and OC may be VDCC and SOCC. Of note, VDCC may be involved in PAF-induced BTI and OC frequency, and SOCC might be involved in PAF-induced OC amplitude.


Assuntos
Canais de Cálcio Tipo L , Bexiga Urinária , Gravidez , Feminino , Camundongos , Animais , Bexiga Urinária/fisiologia , Fator de Ativação de Plaquetas/farmacologia , Verapamil/farmacologia , Contração Muscular , Cálcio/metabolismo
16.
Allergy ; 78(12): 3166-3177, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37415527

RESUMO

BACKGROUND: Anti-heat shock protein (HSP) autoantibodies are detected in autoimmune diseases. We sought to ascertain whether anti-HSP10 IgG is present in patients with CSU and to elucidate the role of HSP10 in CSU pathogenesis. METHOD: Using a human proteome microarray, six potential autoantibodies had higher expression in 10 CSU samples compared with 10 normal controls (NCs). Among them, HSP10 IgG autoantibody was quantified by immune dot-blot assay in sera from 86 CSU patients and 44 NCs. The serum levels of HSP10 and microRNA-101-5p were measured in CSU patients and NCs. The effects of HSP10 and miR-101-5p on mast cell degranulation in response to IgE, compound 48/80, and platelet-activating factor (PAF) were investigated. RESULTS: CSU patients had higher IgG positivity to HSP10 (40.7% vs. 11.4%, p = .001), lower serum HSP10 levels (5.8 ± 3.6 vs. 12.2 ± 6.6 pg/mL, p < .001) than in NCs, and their urticaria severity was associated with anti-HSP10 IgG positivity, while HSP10 levels were related to urticaria control status. MiR-101-5p was increased in CSU patients. PAF enhanced IL4 production in PBMCs from CSU patients. IL-4 upregulated miR-101-5p and reduced HSP10 expression in keratinocytes. Transfection of miR-101-5p reduced HSP10 expression in keratinocytes. MiR-101-5p promoted PAF-induced mast cell degranulation, while HSP10 specifically prevented it. CONCLUSION: A new autoantibody, anti-HSP10 IgG was detected in CSU patients, which showed a significant correlation with UAS7 scores. A decreased serum HSP10 level was associated with upregulation of miR-101-5p due to increased IL-4 and PAF in CSU patients. Modulation of miR-101-5p and HSP10 may be a novel therapeutic approach for CSU.


Assuntos
Urticária Crônica , MicroRNAs , Urticária , Humanos , MicroRNAs/genética , Fator de Ativação de Plaquetas , Interleucina-4 , Doença Crônica , Autoanticorpos , Imunoglobulina G
17.
J Pharmacol Sci ; 152(2): 123-127, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169476

RESUMO

We investigated the extracellular Ca2+ influx pathways involved in platelet-activating factor (PAF)-enhanced guinea pig detrusor smooth muscle (DSM) contractile activities. One micromolar PAF-enhanced DSM contractile activities were completely inhibited by extracellular Ca2+ removal and strongly suppressed by voltage-dependent Ca2+ channel (VDCC) inhibitors. PAF-enhanced DSM contractile activities remaining in the presence of verapamil (10 µM) were not inhibited by LOE-908 (30 µM, an inhibitor of receptor-operated Ca2+ channels (ROCCs)), but were almost completely inhibited by SKF-96365 (30 µM, an inhibitor of store-operated Ca2+ channels (SOCCs) and ROCCs). These results suggest that VDCCs and SOCCs are responsible for PAF-enhanced DSM contractile activities.


Assuntos
Músculo Liso , Fator de Ativação de Plaquetas , Cobaias , Animais , Fator de Ativação de Plaquetas/farmacologia , Fator de Ativação de Plaquetas/metabolismo , Músculo Liso/metabolismo , Contração Muscular , Canais de Cálcio/metabolismo , Verapamil , Cálcio/metabolismo
18.
Ann Allergy Asthma Immunol ; 131(2): 239-252.e6, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37098406

RESUMO

BACKGROUND: The underlying mechanisms of an immediate food-induced allergic reaction involve mast cell degranulation and recruitment of other effector cells, such as lymphocytes, eosinophils, and basophils. How the interaction of various mediators and cells results in anaphylaxis is not fully understood. OBJECTIVE: To evaluate changes in platelet-activating factor (PAF), platelet-activating factor acetylhydrolase (PAF-AH), tryptase, eosinophils, basophils, and eosinophil cationic protein (ECP) in cashew nut-induced anaphylaxis. METHODS: Open cashew nut challenges were performed on 106 children (aged 1-16 years), sensitized to cashew nut, with earlier allergic reaction to cashew nut or no known exposure. PAF, PAF-AH, tryptase, ECP, eosinophils, and basophils were measured at 4 time points. RESULTS: Of 72 challenges with positive results, 34 were defined as anaphylactic. Eosinophil count decreased progressively during an anaphylactic reaction at all 4 time points (P < .005*) compared with baseline. Although significant PAF elevation was observed 1 hour from moderate-to-severe reaction (P = .04*), PAF seemed to peak especially in anaphylaxis but did not achieve statistical significance. PAF peak ratio (peak PAF/baseline PAF) was significantly greater in anaphylactic reactions compared with the no-anaphylaxis group (P = .008*). Maximal percentage change in eosinophils revealed negative correlation to severity score and PAF peak ratio (Spearman's rho -0.424 and -0.516, respectively). Basophils decreased significantly in moderate-to-severe reactions and in anaphylaxis (P < .05*) compared with baseline. Delta-tryptase (peak tryptase minus baseline) did not differ significantly between anaphylaxis and the no-anaphylaxis subgroups (P = .05). CONCLUSION: PAF is a specific anaphylaxis biomarker. Marked decline of eosinophils during anaphylaxis may be related to robust secretion of PAF reflecting migration of eosinophils to target tissues.


Assuntos
Anacardium , Anafilaxia , Criança , Humanos , Triptases/metabolismo , Nozes , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Eosinófilos , Linfócitos
20.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047587

RESUMO

Mast cells are responsible for IgE-dependent allergic responses, but they also produce various bioactive mediators and contribute to the pathogenesis of various cardiovascular diseases, including pulmonary hypertension (PH). The importance of lipid mediators in the pathogenesis of PH has become evident in recent years, as exemplified by prostaglandin I2, the most central therapeutic target in pulmonary arterial hypertension. New bioactive lipids other than eicosanoids have also been identified that are associated with the pathogenesis of PH. However, it remains largely unknown how mast cell-derived lipid mediators are involved in pulmonary vascular remodeling. Recently, it has been demonstrated that mast cells produce epoxidized n-3 fatty acid (n-3 epoxides) in a degranulation-independent manner, and that n-3 epoxides produced by mast cells regulate the abnormal activation of pulmonary fibroblasts and suppress the progression of pulmonary vascular remodeling. This review summarizes the role of mast cells and bioactive lipids in the pathogenesis of PH. In addition, we introduce the pathophysiological role and therapeutic potential of n-3 epoxides, a mast cell-derived novel lipid mediator, in the pulmonary vascular remodeling in PH. Further knowledge of mast cells and lipid mediators is expected to lead to the development of innovative therapies targeting pulmonary vascular remodeling.


Assuntos
Hipertensão Pulmonar , Mastócitos , Humanos , Mastócitos/patologia , Remodelação Vascular , Eicosanoides , Hipertensão Pulmonar/tratamento farmacológico , Fator de Ativação de Plaquetas , Compostos de Epóxi/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...